Research Article
Feature Selection AI Technique for Predicting Chronic Kidney Disease
Preethi Kolluru Ramanaiah*
Issue:
Volume 8, Issue 2, December 2024
Pages:
32-40
Received:
31 May 2024
Accepted:
21 June 2024
Published:
8 July 2024
Abstract: The kidney is a vital organ that plays a crucial role in eliminating waste and excess water from the bloodstream. When renal function is impaired, the filtration process also ceases. This leads to an elevation of harmful molecules in the body, a condition referred to as chronic kidney disease (CKD). Early-stage chronic kidney disease often lacks noticeable symptoms, making it challenging to detect in its early stages. Diagnosing chronic kidney disease (CKD) typically involves advanced blood and urine tests, but unfortunately, by the time these tests are conducted, the disease may already be life-threatening. Our research focuses on the early prediction of chronic kidney disease (CKD) using machine learning (ML) and deep learning (DL) techniques. Utilized a dataset from the machine learning repository at the University of California, Irvine (UCI) to train various machine learning algorithms in conjunction with a Convolutional Neural Network (CNN) model. The algorithms encompassed in this set are Support Vector Machine (SVM), Decision Tree (DT), Random Forest (RF), and Gradient Boosting (GB). Based on the experimental results, the CNN model achieves a prediction accuracy of precisely 97% after feature selection, the highest among all models tested. Hence, the objective of this project is to develop a deep learning-based prediction model to aid healthcare professionals in the timely identification of chronic kidney disease (CKD), potentially leading to life-saving interventions for patients.
Abstract: The kidney is a vital organ that plays a crucial role in eliminating waste and excess water from the bloodstream. When renal function is impaired, the filtration process also ceases. This leads to an elevation of harmful molecules in the body, a condition referred to as chronic kidney disease (CKD). Early-stage chronic kidney disease often lacks no...
Show More
Research Article
Investigation of Histological Image Classification Methods Using Different Feature Extraction Techniques
Nomaz Mirzaev,
Farkhod Meliev*
Issue:
Volume 8, Issue 2, December 2024
Pages:
41-47
Received:
6 July 2024
Accepted:
6 August 2024
Published:
20 August 2024
Abstract: This paper examines the performance of different machine and deep learning algorithms in classifying colon histological images using different feature extraction methods. The relationship between the feature extraction methods and the selected machine learning methods to improve the classification accuracy is analyzed. Widely used methods like local binary patterns, histograms of oriented gradients, Gabor filter and Dobeshi wavelets are investigated for feature extraction from colon histological images. The features extracted by histogram of oriented gradients and Gabor filter methods were used as a single joint feature vector. And popular machine learning methods such as Support vector machine, Decision trees, Random forest, k-nearest neighbors and Naive Bayesian method were used to classify the selected images. The paper also investigates ensemble methods using gradient bousting and voting classifier as examples. The authors also focus on the study of convolutional neural networks as they are one of the main deep learning methods at the moment. The classification methods selected for analysis are compared in terms of classification accuracy and time taken for training and recognition. All pre-defined and adjustable parameters of both feature extraction methods and classification methods were personally selected by the authors as a result of experimental studies, which were conducted using a software tool created in the Python programming language on a set of LC25000 histological images. The software created is easily customizable and can be used in the future to investigate classification methods on other datasets.
Abstract: This paper examines the performance of different machine and deep learning algorithms in classifying colon histological images using different feature extraction methods. The relationship between the feature extraction methods and the selected machine learning methods to improve the classification accuracy is analyzed. Widely used methods like loca...
Show More
Research Article
Incorporation of Artificial Intelligence in Enhancing Quality of Life in Smart Cities
Aman Ullah*,
Syeda Arfa Quddusi,
Iftikhar Haider
Issue:
Volume 8, Issue 2, December 2024
Pages:
48-54
Received:
9 September 2024
Accepted:
29 September 2024
Published:
18 October 2024
Abstract: Rapid urbanization and low residential resources in cities are serious issues that are making city life difficult day by day. The development of smart cities is becoming a need of the present era due to the swift increase in population and environmental issues globally. Smart cities are being introduced in different regions of the world with the incorporation of latest technologies. The incorporation of Artificial Intelligence (AI) is one of the tools that can be used in smart building and cities. AI technologies are transforming public safety, trash management, healthcare, traffic control, and resource management, making cities more sustainable, effective, and responsive to their citizens' demands. There are still lack of awareness in some areas of the world on the efficacy of smart building and construction that is impacting negatively on the economy and growth of those countries.; such as Pakistan is one of those countries that is facing serious challenges due to increased population, urban migration, and poor management of natural resources. The need of planning smart strategies for smart building is very crucial to manage population and housing issues. Smart buildings and cities provide unique and convenient facilities to its residents so that they can contribute positively towards the economy of country. This paper focuses at important areas where AI has the most effects in order to investigate how integrating AI improves quality of life in smart cities. The aim is to highlight artificial intelligence's contribution to improving urban operations, streamlining resource management, and advancing sustainability. Additionally, potential concerns about privacy, data security, and fair access will be discussed. In order to show how AI-driven innovations like predictive analytics, machine learning, and IoT-enabled systems are changing the urban environment, the study synthesizes existing research and real-world examples. The evaluation also covers how AI promotes smart government, tailored urban services, and citizen involvement. The conclusion emphasizes that although AI has great potential to improve the quality of life in smart cities, implementation of the technology must be done in a balanced way to prioritize inclusive policies and ethical concerns for the general welfare of residents.
Abstract: Rapid urbanization and low residential resources in cities are serious issues that are making city life difficult day by day. The development of smart cities is becoming a need of the present era due to the swift increase in population and environmental issues globally. Smart cities are being introduced in different regions of the world with the in...
Show More